Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35591527

RESUMO

Diabase mud (DM) is a silica-rich residue yielding from aggregate crushing and washing operations in quarries. This work focuses on identifying the geopolymerization potential of a diabase mud through characterization of its mineralogical composition, investigation of its reactivity, and assessment of the early compressive strengths of alkali activated mixtures formulated based on the mud's dissolution results. The findings suggest that considerably low amounts of Al and Si metals were dissolved following the dissolution tests conducted on DM, however, the incorporation of small quantities of CEM I, gypsum, and metakaolin (MK) moderately at a Na2SiO3:NaOH ratio of 50:50 and with a molarity of NaOH of 4 M enhanced the geopolymerization compared to low L/S ratio mixtures cured at different conditions. When M was increasing, the high L/S ratio mixtures exhibited fluctuations in strengths, especially beyond a 10 M NaOH molarity. Maximum strengths of mixtures at equivalent molarity of 10 were achieved when the Na2SiO3:NaOH ratio reached 30:70, regardless of the ambient conditions and the presence of CEM I. The curing conditions, the ratio of Na2SO3:NaOH, and the presence of CEM I in the DM-based mixtures did not appear to significantly affect the mixture when NaOH concentration was between 2 M and 4 M; at higher molarities, however, these enhanced the strengths of the geopolymerized DM.

2.
Materials (Basel) ; 15(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35454564

RESUMO

The objective of this research was to study the effect of an optimal mechanical treatment method to reduce the mortar adhered on recycled aggregates (RCA) on the long-term mechanical properties and durability of concretes containing RCA at different replacement levels. It was found that concretes incorporating treated RCA exhibited sharper and more significant increase on 90- and 365-day compressive strengths than any other investigated mixture. The same mixtures also benefitted from a 'shrinkage-controlling' effect, where strains and mass losses were reduced by almost 15% and 10%, respectively, compared to the reference concrete. While sulfate resistance and carbonation resistance are predominantly defined by the hydration products available within the cement paste and not to a large extent by the aggregate type and quality, the incorporation of either treated or untreated RCA in concrete did not appear to expose RACs to significant durability threats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...